Edited by

Shampa Chatterjee Wolfgang Jungraithmayr Debasis Bagchi

IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE

Emerging Roles of Nutraceuticals and Functional Foods in Immune Support

IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE

Emerging Roles of Nutraceuticals and Functional Foods in Immune Support

Edited by

SHAMPA CHATTERJEE University of Pennsylvania School of Medicine, Philadelphia, PA, United States

> WOLFGANG JUNGRAITHMAYR University Hospital Zurich, Zürich, Switzerland; Medical University Brandenburg, Brandenburg, Germany

DEBASIS BAGCHI University of Houston College of Pharmacy, Houston, TX, United States

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-805417-8

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Book Aid Book Aid International Working together to grow libraries in developing countries www.elsevier.com • www.bookaid.org

Publisher: Andre Gerhard Wolff Acquisition Editor: Nancy Maragioglio Editorial Project Manager: Billie Jean Fernandez Production Project Manager: Kiruthika Govindaraju Cover Designer: Limber Matthew

Typeset by MPS Limited, Chennai, India

319

26. Nutrition as a Tool to Reverse Immunosenescence?

ANIS LARBI, OLIVIER CEXUS AND NABIL BOSCO

26.1	Introduction	319
26.2	Epidemiological, Physiological and Clinical Features of	
	Aging	319
26.3	Nutrition and Weight Loss in Older Adults	320
26.4	Immunobiology of Aging	321
26.5	Prevention by Nutrition: The Growing Importance of	
	Functional Food in Older Adults	324
26.6	Functional Food to Improve Immunity: A Closer Look	
	at Claims and Clinical Reality	327
26.7	Functional Food With Proven Clinical Efficacy to	
	Ameliorate Elderly Immunity	328
26.8	Conclusions and Future Directions	332
Refer	ences	332

VI

NEW PERSPECTIVES AND FUTURE DIRECTIONS

27. Therapeutic Interventions to Block Oxidative Stress-Associated Pathologies

NUPOOR PRASAD, PRERNA RAMTEKE, NEERAJ DHOLIA AND UMESH C.S. YADAV

27.1	Introduction	341
27.2	Oxidative Stress-Induced Diseases	342
27.3	Traditional and Novel Therapeutic Targets	350
27.4	Modern Approaches to Understand Oxidative	
	Stress-Induced Pathologies	352
27.5	Regulatory Role of Nutraceuticals and the Paradoxes	355
27.6	Drugs in Clinical Trials for Oxidative Stress-Induced	
	Pathologies	356
27.7	Problems and Limitations Associated With	
	Nutraceuticals	356
27.8	Conclusion and Future Directions	357
Ackn	owledgments	358
Refer	ences	358
Further Reading		362

28. Phytochemicals as Anti-inflammatory Nutraceuticals and Phytopharmaceuticals

MELANIE-JAYNE R. HOWES

28.1 Introduction	363
28.2 Flavonoids	364
28.3 Terpenoids	368
28.4 Steroidal Aglycones and Saponins	377
28.5 Curcumin	378
28.6 Stilbenes	379
28.7 Phenolic Acids	380
28.8 Conclusion	381
Acknowledgments	382
References	382

LIVIO

29. Fermented Milk in Protection Against Inflammatory Mechanisms in Obesity

RAMESH POTHURAJU, VENGALA RAO YENUGANTI, SHAIK ABDUL HUSSAIN AND MINAXI SHARMA

29.1 Introduction	389
29.2 Importance of Functional Foods	390
29.3 Role of Gut Microbiota in Health	390
29.4 Effect of Fermented Milk by Probiotics on Obesity and	
Inflammation	391
29.5 Fermented Milk Products	394
29.6 Effect of Fermented Milk (FM) Products in Obesity	396
29.7 Conclusion	398
Acknowledgments	398
References	398
Further Reading	401

30. Prebiotics and Probiotics in Altering Microbiota: Implications in Colorectal Cancer

RAVI KIRAN PURAMA, MAYA RAMAN, PADMA AMBALAM, SHEETAL PITHVA, CHARMY KOTHARI AND MUKESH DOBLE

30.1 Introduction	403
30.2 Colorectal Cancer and Gut Microbiota:	
Implications of Metabolites	403
Acknowledgments	410
References	410
Further Reading	

31. Naturopathy Lifestyle Interventions in Boosting

Immune Responses in HIV-Positive Population

PRADEEP M.K. NAIR AND HYNDAVI SALWA

31.1 Introduction	415
31.2 Naturopathic Approach Towards HIV-Positive	
Individuals	416
31.3 Lifestyle Modification Before ART	418
31.4 Lifestyle Modification During ART	418
31.5 Discussion	419
31.6 Conclusion	420
References	420

32. Eating Habits in Combating Disease:

Nutraceuticals and Functional Foods at the Crossroads of Immune Health and Inflammatory Responses

SHAMPA CHATTERJEE AND DEBASIS BAGCHI

1	32.1	Introduction	423
1	32.2	Inflammatory and Immune Responses in the	
		Pathology of Communicable and Noncommunicable	
		Diseases	424
1	32.3	Diet Microbiota and Immune Responses	425
2	32.4	Functional Foods in Reversing Metabolic Syndrome	
		as Well as in Improving Malnutrition-Induced	
		Immune Impairment	426
2	32.5	Between Deprivation and Overconsumption:	
		Maintaining a Balanced Diet to Combat Disease	426

- Hye-Kyung Na Sungshin Women's University, Seoul, South Korea
- Pradeep M.K. Nair Ministry of AYUSH, Government of India, New Delhi, India
- Jun Nishihira Hokkaido Information University, Ebetsu, Japan
- Mie Nishimura Hokkaido Information University, Ebetsu, Japan
- Keedon Park Incospharm Corporation, Daejeon, Korea
- **Kyungho Park** University of California, San Francisco, CA, United States; Hallym University, Chuncheon, Korea
- **Priyal Patel** University of Pennsylvania School of Medicine, Philadelphia, PA, United States
- Bela Peethambaran University of Sciences, Philadelphia, PA, United States
- Sheetal Pithva Christ College, Rajkot, Gujarat, India
- Julie Plée University of Champagne-Ardenne, Reims, France
- Ramesh Pothuraju National Dairy Research Institute, Karnal, Haryana, India; University of Nebraska Medical Center, Omaha, Nebraska, United States
- Nupoor Prasad Central University of Gujarat, Gujarat, India
- Ravi Kiran Purama NIT Calicut, Calicut, Kerala, India
- Yongkang Qiao National University of Singapore, Singapore, Singapore
- Maya Raman Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Kunka M. Ramkumar SRM University, Kattankulathur, Tamil Nadu, India
- Prerna Ramteke Central University of Gujarat, Gujarat, India
- Marcella Reale University "G.D'Annunzio" Chieti-Pescara, Chieti, Italy
- Sashwati Roy The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Fumihiko Sakai Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Hyndavi Salwa Ministry of AYUSH, Government of India, New Delhi, India
- Venkatesh Sampath Children's Mercy Hospital, Kansas City, MO, United States

- **Amy K. Schaefer** University of Delaware, Newark, DE, United States
- Chandan K. Sen The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Rahul Shah University of Sciences, Philadelphia, PA, United States
- Ashish K. Sharma University of Virginia, Charlottesville, VA, United States
- Minaxi Sharma ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, Punjab, India
- **Travis M. Sifers** Children's Mercy Hospital, Kansas City, MO, United States
- Dina C. Simes University of Algarve, Faro, Portugal
- **Dornadula Sireesh** SRM University, Kattankulathur, Tamil Nadu, India
- Young-Joon Surh Seoul National University, Seoul, South Korea
- Tania A. Thimraj SRM University, Kattankulathur, Tamil Nadu, India
- Thai Tran National University of Singapore, Singapore,
- Rosa Tundis University of Calabria, Rende, Italy
- Swapna Upadhyay Karolinska Institutet, Stockholm, Sweden
- Jose P. Vazquez-Medina University of Pennsylvania School of Medicine, Philadelphia, PA, United States
- Carla S.B. Viegas University of Algarve, Faro, Portugal
- Ballambattu Vishnu Bhat Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- Gwendolyn Vliegen University of Antwerp, Wilrijk, Belgium
- Elizabeth A. Witherden King's College London, London, United Kingdom
- **Umesh C.S. Yadav** Central University of Gujarat, Gujarat, India
- Vengala Rao Yenuganti National Dairy Research Institute, Karnal, Haryana, India
- Huihui You National University of Singapore, Singapore

30

Prebiotics and Probiotics in Altering Microbiota: Implications in Colorectal Cancer

Ravi Kiran Purama¹, Maya Raman², Padma Ambalam³, Sheetal Pithva³, Charmy Kothari³ and Mukesh Doble²

¹NIT Calicut, Calicut, Kerala, India ²Indian Institute of Technology Madras, Chennai, Tamil Nadu, India ³Christ College, Rajkot, Gujarat, India

30.1. INTRODUCTION

The human microbiota, a pool of microbes, colonizing different parts of body including the gastrointestinal tract, oronasopharyngeal cavity, and skin and urogenital tract (Sommer and Bäckhed, 2013), comprises approximately 10^{14} bacterial cells and is thus, 10-times higher than the number of cells in the body (Sekirov et al., 2010). The human microbiota is dynamic in its composition with several species undergoing constant change. The changes to the population of the predominant species are mainly influenced by the feeding habit, environmental exposure and the alterations in the physiological conditions of the host. These changes in the microbial population dynamics range from the dominance of mutual/benign beneficial (symbionts), to commensals/opportunistic pathogens, and finally towards the dominance of a pathogenic species occuring during severe deviation in host conditions from the optimum to extreme as represented by microbial dysbiosis. The seeding and development of specific microbial flora, such as specific for local organs/tracts, happens from infancy and is influenced by genetic, epigenetic and environmental factors including birth conditions, antibiotic usage and feeding habits (Bermon et al., 2015). The mode of birth (natural or C-section) also plays a role in the initial microbial composition as it modulates postnatal immune system development (Min and Rhee, 2015). Overall there is an increasing awareness that gut microbial dysbiosis resulting from the prolonged/inappropriate antibiotic exposure, alcohol misuse/increased uptake, and inappropriate food consumption or diet, has been associated with various diseases such as inflammatory bowel disease (IBD), chronic fatigue syndrome, obesity, cancer, bacterial vaginosis, and colitis. As a result, research in the human gut microbiome has gained immense interest and has shifted the paradigm of our understanding and treatment of metabolic disorders to gut resident microbes and their functions (Aagaard et al., 2014).

Within this milieu, the current chapter focuses on the gut dysbiosis and associated colorectal cancer (CRC) and its prevention by pre- and probiotics. This is done from the standpoint of pre- and probiotic intervention leading to the establishment of benign beneficial microbiota on postoperative gut conditions. Usage of pre-/ probiotics (live microbes and nondigestible carbohydrates with health beneficial effects) blossomed in late 1800 and early 1900. Thereafter, the accumulating evidence proved its use for the health effects stemming from intestinal microbial imbalance during CRC. These assist in CRC prevention through various mechanisms including fecal bulking, less resident time, short-chain fatty acid production, etc., which are detailed in subsequent sections.

30.2. COLORECTAL CANCER AND GUT MICROBIOTA: IMPLICATIONS OF METABOLITES

CRC is the third most widespread malignant neoplasm among men and women and the second leading cause of mortality in USA; the incidence of this deadly disease is escalating in the other parts of world (DeBarros and